1. Unique identification code of the product-type: Rebar connection with fischer Superbond

2. Intended use/es:

<table>
<thead>
<tr>
<th>Product</th>
<th>Intended use/es</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortar for post-installed rebar connections</td>
<td>Post-installed connection of reinforcing bars (rebars) by anchoring or overlap connection joint in normal weight concrete, see appendix, especially Annexes B 1 to B 10</td>
</tr>
</tbody>
</table>

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

 Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2013-04

 European Technical Assessment: ETA-13/0651; 2015-06-18

 Technical Assessment Body: DIBt

 Notified body/ies: 1343 – MPA Darmstadt

7. Declared performance/s:

 Mechanical resistance and stability (BWR 1)

<table>
<thead>
<tr>
<th>Essential characteristic</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design values of the ultimate bond resistance</td>
<td>See appendix, especially Annex C 1</td>
</tr>
</tbody>
</table>

 Safety in case of fire (BWR 2)

<table>
<thead>
<tr>
<th>Essential characteristic</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction to fire</td>
<td>Rebar connections satisfy requirements for Class A 1</td>
</tr>
<tr>
<td>Resistance to fire</td>
<td>No performance assessed</td>
</tr>
</tbody>
</table>

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

 The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

 Signed for and on behalf of the manufacturer by:

 Andreas Bucher, Dipl.-Ing. Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

 Tumlingen, 2015-06-26

 - This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
 - The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.
Specific part

1 Technical description of the product

The subject of this European technical assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the fischer injection mortar Superbond in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm according to Annex A 4 or the fischer rebar anchor FRA sizes M12, M13, M20 and M24 according to Annex A 5 and injection mortar fischer injection mortar FIS SB are used for rebar connections. The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded element, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

<table>
<thead>
<tr>
<th>Essential characteristic</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design values of the ultimate bond resistance</td>
<td>See Annex C 1</td>
</tr>
</tbody>
</table>

3.2 Safety in case of fire (BWR 2)

<table>
<thead>
<tr>
<th>Essential characteristic</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction to fire</td>
<td>Rebar connections satisfy requirements for Class A1</td>
</tr>
<tr>
<td>Resistance to fire</td>
<td>No performance assessed</td>
</tr>
</tbody>
</table>

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.
Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001 April 2013 used as European Assessment Document (EAD) according to Article 68 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1
Installation anchor

Figure A1:
Overlap joint with existing reinforcement for rebar connections of slabs and beams

Figure A2:
Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

Figure A3:
End anchoring of slabs of beams (e.g. designed as simply supported)

Figure A4:
Rebar connection for stressed primarily in compression

Figure A5:
Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

Note to **Figure A1 to A5**

In the Figures no traverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1: 2004+AC:2010.

Preparing of joints according to Annex B 2

Rebar connection with fischer Superbond

Product description
Installed condition and examples of use for rebar
Appendix 4/18

Installation anchor

The required transverse reinforcement acc. to EN 1992-1-1:2004+AC:2010 is not shown in the figures. The fischer rebar anchor FRA may be only used for axial tensile force. The tensile force must be transferred by lap to the existing reinforcement of the building. The transfer of the shear force has to be ensured by suitable measure, e.g. by means of shear force or anchors with European Technical Approval/Assessment (ETA).

Rebar connection with fischer Superbond

Product description
Installed condition and examples of use for rebar anchor FRA

Annex A 2
Injection cartridge fischer FIS SB
Sizes: 390 ml, 585 ml, 1100 ml, 1500 ml

Marking: FIS SB processing times, shelf-life, hazard code, curing times and processing times (depending on temperature), piston travel scale, size, volume

Sealing cap

Static mixer FIS MR or FIS UMR

fischer rebar anchor FRA M12, M16, M20, M24

marking setting depth washer hexagon nut

Reinforcing bar (rebar) φ 8, φ 10, φ 12, φ 14, φ 16, φ 20, φ 25, φ 28, φ 32

marking setting depth

Rebar connection with fischer Superbond

Product description
Injection mortar; rebar anchor FRA; reinforcing bar

Annex A 3
Figure A9: Properties of reinforcing bars (rebar)

- The minimum value of related rip area $f_{R,\text{min}}$ according to EN 1992-1-1:2004+AC:2010
- The maximum outer rebar diameter over the rips shall be:
 - The nominal diameter of the rip $\phi + 2 \times h$ ($h \leq 0.07 \times \phi$)
 - (ϕ: Nominal diameter of the bar; h: rip height of the bar)

Table A1: Materials of rebars

<table>
<thead>
<tr>
<th>Designation</th>
<th>Reinforcing bar (rebar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcing bar</td>
<td>Bars and de-coiled rods class B or C with f_{uk} and k according to NDP or NCI of EN 1992-1-1/NA:2013 $f_{uk} = f_{ck} = k \cdot f_{ck}$</td>
</tr>
</tbody>
</table>
Figure A10: Properties of fischer rebar anchors FRA

Head marking e.g.: □ FRA (for stainless steel)
□ FRA C (for high corrosion-resistant steel)

Table A2: Installation parameters for fischer rebar anchors FRA

<table>
<thead>
<tr>
<th>Threaded diameter</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal diameter of the bar</td>
<td>φ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width across flat</td>
<td>SW</td>
<td>19</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Nominal drill bit diameter</td>
<td>d₀</td>
<td>14</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Drill hole depth(h₀ = lₐₚₜₜ)</td>
<td>lₐₚₜₜ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective embedment depth</td>
<td>lᵥ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance concrete surface to welded join</td>
<td>lₜ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter of clearance hole in the fixture</td>
<td>Pre-positioned ≤ dₙ</td>
<td>14</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Push through ≤ dₙ</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>Minimum thickness of concrete member</td>
<td>hₘₐₙ</td>
<td>hₜ + 30 ≥ 100</td>
<td>hₜ + 2d₀</td>
<td></td>
</tr>
</tbody>
</table>
| Maximum torque moment | lₐₜₜ}_{-\infty}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}

Table A3: Materials of fischer rebar anchors FRA

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>FRA</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reinforcing bar</td>
<td>B500B acc. to DIN 488-1:2000</td>
<td>FRA</td>
</tr>
<tr>
<td>2</td>
<td>Round bar with partial or full thread</td>
<td>Stainless steel acc. to EN 10088-1:2014</td>
<td>High corrosion-resistant steel acc. to EN 10088-1:2014</td>
</tr>
<tr>
<td>4</td>
<td>Hexagon nut</td>
<td>Stainless steel acc. to EN 10088-1:2014; Strength class 80; acc. to EN ISO 3506:2009</td>
<td>High corrosion-resistant steel acc. to EN 10088-1:2014; Strength class 80; acc. to EN ISO 3506:2009</td>
</tr>
</tbody>
</table>

Rebar connection with fischer Superbond

Product description
Properties and materials of fischer rebar anchors FRA

Annex A 5
Specifications of intended use

Anchorages subject to:
Static and quasi-static loads

Base materials:
- Reinforced or unreinforced normal weight concrete according to EN 206-1:2013
- Strength classes C12/15 to C50/60 according to EN 206-1:2013
- Maximum chloride content of 0.40% (CL 0.40) related to the cement content according to
 EN 206-1:2013
- Non-carbonated concrete
 Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed
 in the area of the post-installed rebar connection with a diameter of φ+60 mm prior to the installation of the new
 rebar.
 The depth of concrete to be removed shall correspond to at least the minimum concrete cover in
 accordance with EN 1992-1-1:2004+AC:2010
 The foregoing may be neglected if building components are new and not carbonated and if building components
 are in dry conditions

Temperature Range:
- -40°C to +80°C (max. short term temperature +60°C and max. long term temperature +50°C)

Use conditions (Environmental conditions) for fischer rebar anchors FRA:
- Structures subject to dry internal conditions exists (fischer rebar anchors FRA and FRA C)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist (fischer rebar anchors
 FRA and FRA C)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist (fischer rebar anchors FRA C)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of
 seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in
 desulphurization plants or road tunnels where de-icing materials are used)

Design:
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and
 concrete work
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted
- The actual position of the reinforcement in the existing structure shall be determined on the basis of
 the construction documentation and taken into account when designing

Installation:
- Dry or wet concrete
- It must not be installed in flooded holes
- Overhead installation allowed
- Hole drilling by hammerdrill or compressed airdrill mode
- The installation of post-installed rebar shall be done only by suitable trained installer and under
 Supervision on site; the conditions under which an installer may be considered as suitable trained and
 the conditions for Supervision on site are up to the Member States in which the installation is done
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be
determined using a rebar detector suitable for this purpose as well as on the basis of the
construction documentation and then marked on the building component for the overlap joint)

Rebar connection with fischer Superbond

| Intended use Specifications | Annex B 1 |
Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010
- The joints for concreting must be roughened to at least such an extent that aggregate protrude

\[c \geq \text{min } c \]
\[\leq 4 \phi^{(1)} \]
\[8 \text{ mm} \leq \phi^{(1)} \leq 32 \text{ mm} \]

\(\ell_0 \) lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
\(\xi \) effective embedment depth, \(\geq \ell_0 + c_1 \)
\(d_0 \) nominal drill bit diameter, see Annex R 5

Rebar connection with fischer Superbond

Intended use
General construction rules for post-installed rebars

Annex B 2
Figure B2: General construction rules for post-installed rebar anchors FRA

- Only tension forces in the axis of the FRA may be transmitted
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear load shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with an European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as elongated holes with the axis in the direction of the shear force.

\[c \geq \min c \]
\[12 \text{ mm} \leq \phi^{(1)} \leq 25 \text{ mm} \]
\[\leq 4 \phi^{(1)} \]

1) If the clear distance between lapped bars exceeds \(4 \phi \) then the lap length shall be increased by the difference between the clear bar distance and \(4 \phi \)

- \(c \) concrete cover of post-installed FRA
- \(c_1 \) concrete cover at end face of existing rebar
- \(\min c \) minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.4.2
- \(\phi \) nominal diameter of the bar
- \(\ell_0 \) lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- \(\ell_{\text{ges}} \) overall embedment depth, \(\geq \ell_v + \ell_u \)
- \(\ell_u \) length of the bonded in threaded part
- \(d_0 \) nominal drill bit diameter, see Annex B 5
- \(t_{\text{fix}} \) thickness of the fixture
- \(\ell_v \) effective embedment depth

Rebar connection with fischer Superbond

Annex B 3

Intended use
General construction rules for post-installed rebar anchors FRA
Appendix 11/18

Table B1:
Minimum concrete cover c depending of the drilling method and the drilling tolerance

<table>
<thead>
<tr>
<th>Drilling method</th>
<th>Nominal diameter of the bar ϕ [mm]</th>
<th>Without drilling aid [mm]</th>
<th>With drilling aid [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hammer drilling</td>
<td>≤ 20</td>
<td>30 mm + 0.06 t_c</td>
<td>30 mm + 0.02 t_c ≥ 2 ϕ</td>
</tr>
<tr>
<td></td>
<td>≥ 25</td>
<td>40 mm + 0.06 t_c</td>
<td>40 mm + 0.02 t_c ≥ 2 ϕ</td>
</tr>
<tr>
<td>Compressed air</td>
<td>≤ 20</td>
<td>50 mm + 0.08 t_c</td>
<td>50 mm + 0.02 t_c ≤ 2 ϕ</td>
</tr>
<tr>
<td>Drilling</td>
<td>≥ 25</td>
<td>60 mm + 0.08 t_c</td>
<td>60 mm + 0.02 t_c ≤ 2 ϕ</td>
</tr>
</tbody>
</table>

$^{1)}$ See Annex B2, Figure B1 and Annex B3, Figure B2

Note: The minimum concrete cover as specified in EN 1992-1-1:2004 + AC:2010 must be observed.

Table B2:
Dispensers and cartridge sizes corresponding to maximum embedment depth $t_{v,max}$

<table>
<thead>
<tr>
<th>Rebar/FRA ϕ [mm]</th>
<th>Manual and_acc. dispenser</th>
<th>Pneumatic dispenser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cartridge size</td>
<td>Cartridge size</td>
</tr>
<tr>
<td></td>
<td>390 ml</td>
<td>585 ml</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1400</td>
<td>2000</td>
</tr>
<tr>
<td>14</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum concrete</td>
<td>- 15°C</td>
<td>- 5°C</td>
</tr>
<tr>
<td>temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum concrete</td>
<td>+ 40°C</td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B3: Working times t_{work} and curing times t_{cure}

<table>
<thead>
<tr>
<th>Temperature in the anchorage base $[\degree C]$</th>
<th>Minimum processing time t_{work} [minutes]</th>
<th>Minimum curing time t_{cure} [minutes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥-15 to -10</td>
<td>60</td>
<td>36 hours</td>
</tr>
<tr>
<td>>-10 to -5</td>
<td>30</td>
<td>24 hours</td>
</tr>
<tr>
<td>>-5 to ±0</td>
<td>20</td>
<td>8 hours</td>
</tr>
<tr>
<td>>±5 to +5</td>
<td>13</td>
<td>4 hours</td>
</tr>
<tr>
<td>>+5 to +10</td>
<td>9</td>
<td>12 hours</td>
</tr>
<tr>
<td>>+10 to +20</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>>+20 to +30</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>>+30 to +40</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>

If the temperature in the concrete falls below 0°C the cartridge has to be warmed up to +15°C.

Rebar connection with fischer Superbond

Intended use
Minimum concrete cover/Maximum embedment depth per dispenser and cartridge size/Working times and curing times

Annex B 4
Table B4:
Installation tools for drilling and cleaning the bore hole and injection of the mortar

<table>
<thead>
<tr>
<th>Rebar / FRA</th>
<th>Nominal drill bit diameter</th>
<th>Nominal drill bit diameter</th>
<th>Diameter of cutting edge</th>
<th>Steel brush diameter</th>
<th>Cleaning nozzle</th>
<th>Extension tube</th>
<th>Injection adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ [mm]</td>
<td>d_p [mm]</td>
<td>d_{cut} [mm]</td>
<td>d_{cut} [mm]</td>
<td>d_{cut} [mm]</td>
<td>d_{cut} [mm]</td>
<td>[mm]</td>
<td>[mm]</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>12</td>
<td>≤ 10,5</td>
<td>≤ 12,5</td>
<td>11,0</td>
<td>12,5</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>14</td>
<td>≤ 12,5</td>
<td>≤ 14,5</td>
<td>12,5</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>16</td>
<td>≤ 14,5</td>
<td>≤ 16,5</td>
<td>15</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>18</td>
<td>18</td>
<td>≤ 18,5</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>20</td>
<td>≤ 20,55</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>25</td>
<td>≤ 25,55</td>
<td>26,5</td>
<td>25</td>
<td>19</td>
<td>9 or 15</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>30</td>
<td>≤ 30,55</td>
<td>32</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>35</td>
<td>35</td>
<td>≤ 35,70</td>
<td>37</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>40</td>
<td>40</td>
<td>≤ 40,70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Both drill bit diameters can be used

Rebar connection with fischer Superbond

Intended use
Installation tools for drilling and cleaning the bore hole and injection installation of the mortar

Annex B 5
1. Drill hole

Note: Before drilling, remove carbonized concrete, clean contact areas (see Annex B1).
In case of aborted drill hole the drill hole shall be filled with mortar.

Drill hole to the required embedment depth using a hammer-drill with carbide drill bit set in rotation hammer mode or a compressed air drill. Drill bit sizes see Table B4.

Measure and control concrete cover \(c \):
\[c_{\text{drill}} = c + \phi / 2 \]
Drill parallel to surface edge and to existing rebar.
Where applicable use fischer drilling aid.

For holes \(t_s > 20 \) cm use drilling aid. Three different options can be considered:
A) fischer drilling aid
B) Slit or spirit level
C) Visual check
2.1 Compressed air cleaning

Blowing
Two times from the back of the hole with oil-free compressed air (min. 6 bar) until return air stream is free of noticeable dust.

Brushing (with power drill)
Two times with the specified brush size (brush diameter > borehole diameter) by inserting the round steel brush to the back of the hole in a twisting motion. The brush shall produce natural resistance as it enters the anchor hole. If this is not the case, please use a new brush or a brush with a larger diameter. For appropriate brushes see Table B4.

Blowing
Two times from the back of the hole with oil-free compressed air (min. 6 bar) until return air stream is free of noticeable dust.

2.2 Manual Cleaning:

Manual cleaning is permitted for hammer drilled boreholes up to hole diameters $d_0 \leq 18$ mm and depths $l_v, r_{cap}, l_{ges} \leq 160$ mm

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blowing</td>
<td>Two strokes with Fischer blow-up pump from the back of the hole until return air stream is free of noticeable dust</td>
</tr>
<tr>
<td>Brushing</td>
<td>Two times with the specified brush size (brush diameter > borehole diameter d_0) by inserting the round steel wire brush to the back of the hole with a twisting motion. The brush shall produce natural resistance as it enters the anchor hole. If this is not the case, please use a new brush or a brush with a larger diameter. For appropriate brushes see Table B4</td>
</tr>
<tr>
<td>Blowing</td>
<td>Two strokes with Fischer blow-out pump from the back of the hole until return air stream is free of noticeable dust</td>
</tr>
<tr>
<td>Manual cleaning</td>
<td>Fischer hand pump recommended for blowing out bore holes with diameters $d_0 \leq 18$ mm and bore hole depth l_v respectively $l_{ges} \leq 160$ mm</td>
</tr>
</tbody>
</table>

Rebar connection with Fischer Superbond

Intended use
Installation instruction part 2

Annex B 7
3. Rebar preparation and cartridge preparation

Before use, make sure that the rebar is dry and free of oil or other residue.
Mark the embedment depth on the rebar (e.g. with tape) t_e
Insert rebar in borehole, to verify hole and setting depth t_c, resp. t_ges

Injection system preparation

No. 1: Twist off the sealing cap

No. 2: Twist on the static mixer (the spiral in the static mixer must be clearly visible).

No. 3: Place the cartridge into a suitable dispenser.

No. 4: Press approximate 10 cm of material out until the resin is evenly grey in colour. Don’t use mortar that is not uniformly grey.

4. Inject mortar into borehole
4.1 borehole depth ≤ 250 mm:

Inject the mortar from the back of the hole towards the front and slowly withdraw the mixing nozzle step by step after each trigger pull.
Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the rebar and the concrete is completely filled with adhesive over the embedement length.

After injecting, depressurize the dispenser by pressing the release trigger. This will prevent further mortar discharge from the mixing nozzle.

Rebar connection with fischer Superbond

Intended use
Installation instruction part 3

Annex B 8
4.2 borehole depth > 250 mm:

Assemble mixing nozzle FIS MR or FIS UMR, extension tube and injection adapter (see Table B 4).

Mark the required mortar level \(l_m \) and embedding depth \(l_e \) resp. \(l_{e,ges} \) with tape or marker on the injection extension tube.

a) Estimation:

\[
l_m = \frac{1}{3} \cdot l_e \text{ resp. } l_m = \frac{1}{3} \cdot l_{e,ges}
\]

b) Precise formula for optimum mortar volume:

\[
l_m = l_e \text{ resp. } l_{e,ges} \left(1.2 \times \frac{d_2}{d_3} - 0.2 \right) \text{ [mm]}
\]

Insert injection adapter to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the injection adapter towards the front of the hole.

Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the rebar and the concrete is completely filled with adhesive over the embedding length.

When using an injection adapter continue injection until the mortar level mark \(l_m \) becomes visible.

Maximum embedding depth see Table B 2.

After injecting, depressurize the dispenser by pressing the release trigger. This will prevent further mortar discharge from the mixing nozzle.
4.3 Insert rebar

For each installation insert the rebar slowly twisted into the borehole until the embedment mark is at the concrete surface level.

Support the rebar and secure it from falling till mortar started to harden, e.g. using wedges.

After installing the rebar the annular gap must be completely filled with mortar.

Proper installation
- Desired anchoring embedment is reached t_1; embedment mark at concrete surface.
- Excess mortar flows out of the borehole after the rebar has been fully inserted until the embedment mark.

Observe the working time t_{work} (see Table B3), which varies according to temperature of base material. Minor adjustments to the rebar position may be performed during the working time.

Full load may be applied only after the curing time t_{cure} has elapsed (see Table B3).
Minimum anchorage length and minimum lap length

The minimum anchorage length $l_{n,\text{min}}$ and the minimum lap length $l_{n,\text{fin}}$ according to EN 1992-1-1:2004+AC:2010 ($f_{b,\text{fin}}$ acc. to Eq. 8.6 and Eq. 8.7 and $f_{b,\text{fin}}$ acc. to Eq. 8.11) shall be multiply by a factor according to Table C1.

Table C1: Factor related to concrete class and drilling method

<table>
<thead>
<tr>
<th>Concrete class</th>
<th>Drilling method</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12/15 to C50/60</td>
<td>Hammer drilling and compressed air drilling</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Table C2: Design values of the ultimate bond resistance f_{ub} in N/mm² for hammer drilling and compressed air drilling

According to EN 1992-1-1:2004+AC:2010 for gooc bonds conditions (for all other bond conditions multiply the values by 0,7)

<table>
<thead>
<tr>
<th>Rebar ϕ [mm]</th>
<th>Bond resistance f_{ub} [N/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C12/15</td>
</tr>
<tr>
<td>8 to 32</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Rebar connection with fischer Superbond

Performances
- Minimum anchorage length and minimum lap length
- Design values of ultimate bond resistance f_{ub}