European Technical Assessment ETA-13/0651 of 18 June 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:
Deutsches Institut für Bautechnik

Trade name of the construction product
Rebar connection with fischer Superbond

Product family
to which the construction product belongs
Post-installed rebar connection

Manufacturer
fischerwerke GmbH & Co. KG
Otto-Hahn-Straße 15
79211 Denzlingen
DEUTSCHLAND

Manufacturing plant
fischerwerke

This European Technical Assessment contains
20 pages including 3 annexes which form an integral part of this assessment

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of
The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.
Specific part

1 Technical description of the product

The subject of this European technical assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the fischer injection mortar Superbond in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm according to Annex A 4 or the fischer rebar anchor FRA sizes M12, M16, M20 and M24 according to Annex A 5 and injection mortar fischer injection mortar FIS SB are used for rebar connections. The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded element, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

<table>
<thead>
<tr>
<th>Essential characteristic</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design values of the ultimate bond resistance</td>
<td>See Annex C 1</td>
</tr>
</tbody>
</table>

3.2 Safety in case of fire (BWR 2)

<table>
<thead>
<tr>
<th>Essential characteristic</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction to fire</td>
<td>Rebar connections satisfy requirements for Class A1</td>
</tr>
<tr>
<td>Resistance to fire</td>
<td>No performance assessed</td>
</tr>
</tbody>
</table>

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.
Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 18 June 2015 by Deutsches Institut für Bautechnik

Uwe Bender beglaubigt:
Head of Department Lange
Installation anchor

Figure A1: Overlap joint with existing reinforcement for rebar connections of slabs and beams

Figure A2: Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

Figure A3: End anchoring of slabs of beams (e.g. designed as simply supported)

Figure A4: Rebar connection for stressed primarily in compression

Figure A5: Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

Note to Figure A1 to A5

In the Figures no traverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1: 2004+AC:2010.

Preparing of joints according to Annex B 2

Rebar connection with fischer Superbond

Product description
Installed condition and examples of use for rebars

Annex A 1
Installation anchor

Figure A6: Lap to a foundation of a column under bending.

Figure A7: Lap of the anchoring of guardrail posts. In the anchor plate, the drill holes for the rebar anchors have to be designed as elongated holes with axial direction to the shear force.

Figure A8: Lap of the anchoring of cantilevered buildings. In the anchor plate, the drill holes for the rebar anchors have to be designed as elongated holes with axial direction to the shear load.

The required transverse reinforcement acc. to EN 1992-1-1:2004+AC:2010 is not shown in the figures. The fischer rebar anchor FRA may be only used for axial tensile force. The tensile force must transferred by lap to the existing reinforcement of the building. The transfer of the shear force has to be ensured by suitable measure, e.g. by means of shear force or anchors with European Technical Approval/Assessment (ETA).

Rebar connection with fischer Superbond

<table>
<thead>
<tr>
<th>Product description</th>
<th>Annex A 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed condition and examples of use for rebar anchor FRA</td>
<td></td>
</tr>
</tbody>
</table>
Injection cartridge fischer FIS SB
Sizes: 390 ml; 585 ml; 1100 ml, 1500 ml

Marking: FIS SB processing times, shelf-life, hazard code, curing times and processing times (depending on temperature), piston travel scale, size, volume

Sealing cap

Static mixer FIS MR or FIS UMR

fischer rebar anchor FRA M12, M16, M20, M24

marking setting depth washer hexagon nut

Reinforcing bar (rebar) φ 8, φ 10, φ 12, φ 14, φ 16, φ 20, φ 25, φ 28, φ 32

marking setting depth

Rebar connection with fischer Superbond

Product description
Injection mortar; rebar anchor FRA; reinforcing bar

Annex A 3
Figure A9: Properties of reinforcing bars (rebar)

- The minimum value of related rip area $f_{rt,\text{min}}$ according to EN 1992-1-1:2004+AC:2010
- The maximum outer rebar diameter over the rips shall be:
 - The nominal diameter of the rip $\phi + 2 \times h$ ($h \leq 0.07 \times \phi$)
 - (ϕ: Nominal diameter of the bar; h: rip height of the bar)

Table A1: Materials of rebars

<table>
<thead>
<tr>
<th>Designation</th>
<th>Reinforcing bar (rebar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebar according to EN 1992-1-1:2004+AC:2010, Annex C</td>
<td>Bars and de-coiled rods class B or C with f_{kx} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{kx} = f_{k} = k \cdot f_{k}$</td>
</tr>
</tbody>
</table>
Figure A10: Properties of Fischer rebar anchors FRA

![Diagram of Fischer rebar anchor](image)

Head marking e.g.:
- FRA (for stainless steel)
- FRA C (for high corrosion-resistant steel)

Table A2: Installation parameters for Fischer rebar anchors FRA

<table>
<thead>
<tr>
<th>Threaded diameter</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal diameter of the bar</td>
<td>ϕ [mm]</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Width across flat</td>
<td>SW [mm]</td>
<td>19</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Nominal drill bit diameter</td>
<td>d_0 [mm]</td>
<td>14</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Drill hole depth ($h_c = l_{ges}$)</td>
<td>l_{ges} [mm]</td>
<td>$\ell_v + \ell_e$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective embedment depth</td>
<td>ℓ_v [mm]</td>
<td>acc. to static calculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance concrete surface to welded join</td>
<td>ℓ_e [mm]</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter of clearance hole in the fixture</td>
<td>d_t [mm]</td>
<td>14</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Minimum thickness of concrete member</td>
<td>h_{min} [mm]</td>
<td>$h_c + 30 \geq 100$</td>
<td>$h_c + 2d_0$</td>
<td></td>
</tr>
<tr>
<td>Maximum torque moment</td>
<td>T_{max} [Nm]</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
</tbody>
</table>

1) For bigger clearance holes in the fixture see chapter 1.1 of the TR 029
2) Both drill bit diameters can be used

Table A3: Materials of Fischer rebar anchors FRA

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>FRA</th>
<th>FRA C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reinforcing bar</td>
<td>B500B acc. to DIN 488-1:2009</td>
<td>Stainless steel acc. to EN 10088-1:2014</td>
</tr>
<tr>
<td>2</td>
<td>Round bar with partial or full thread</td>
<td>Stainless steel acc. to EN 10088-1:2014</td>
<td>High corrosion-resistant steel acc. to EN 10088-1:2014</td>
</tr>
<tr>
<td>4</td>
<td>Hexagon nut</td>
<td>Stainless steel acc. to EN 10088-1:2014; Strength class 80; acc. to EN ISO 3506:2009</td>
<td>High corrosion-resistant steel acc. to EN 10088-1:2014; Strength class 80; acc. to EN ISO 3506:2009</td>
</tr>
</tbody>
</table>

Rebar connection with Fischer Superbond

Product description
Properties and materials of Fischer rebar anchors FRA

Annex A 5
Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2013
 Strength classes C12/15 to C50/60 according to EN 206-1:2013
- Maximum chloride content of 0.40% (CL 0.40) related to the cement content according to
 EN 206-1:2013
- Non-carbonated concrete
 Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed
 in the area of the post-installed rebar connection with a diameter of \(\phi + 60 \) mm prior to the installation of the new
 rebar
 The depth of concrete to be removed shall correspond to at least the minimum concrete cover in
 accordance with EN 1992-1-1:2004+AC:2010
 The foregoing may be neglected if building components are new and not carbonated and if building components
 are in dry conditions

Temperature Range:

- -40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C)

Use conditions (Environmental conditions) for fischer rebar anchors FRA:

- Structures subject to dry internal conditions exists (fischer rebar anchors FRA and FRA C)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist (fischer rebar anchors
 FRA and FRA C)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist (fischer rebar anchors FRA C)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone
 of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in
 desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and
 concrete work
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted
- The actual position of the reinforcement in the existing structure shall be determined on the basis of
 the construction documentation and taken into account when designing

Installation:

- Dry or wet concrete
- It must not be installed in flooded holes
- Overhead installation allowed
- Hole drilling by hammerdrill or compressed airdrill mode
- The installation of post-installed rebar shall be done only by suitable trained installer and under
 Supervision on site; the conditions under which an installer may be considered as suitable trained and
 the conditions for Supervision on site are up to the Member States in which the installation is done
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be
determined using a rebar detector suitable for this purpose as well as on the basis of the
construction documentation and then marked on the building component for the overlap joint)
Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010
- The joints for concreting must be roughened to at least such an extent that aggregate protrude

\[c \geq \min c \]
\[\leq 4 \phi^{1)} \]
\[8 \text{ mm} \leq \phi^{1)} \leq 32 \text{ mm} \]
\[d_0 \]
\[\ell_0 \]
\[\ell_0 + c \]

1) If the clear distance between lapped bars exceeds 4 \(\phi \) then the lap length shall be increased by the difference between the clear bar distance and 4 \(\phi \)

- \(c \): concrete cover of post-installed rebar
- \(c_1 \): concrete cover at end-face of existing rebar
- \(\min c \): minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- \(\phi \): nominal diameter of the bar
- \(\ell_0 \): lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- \(\ell_1 \): effective embedment depth, \(\geq \ell_0 + c_1 \)
- \(d_0 \): nominal drill bit diameter, see Annex B 5

Rebar connection with fischer Superbond

Intended use
General construction rules for post-installed rebars

Annex B 2
Figure B2: General construction rules for post-installed rebar anchors FRA

- Only tension forces in the axis of the FRA may be transmitted.
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear load shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with an European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as elongated holes with the axis in the direction of the shear force.

Diagram

- Member edge
- \(c \geq \min c \)
- \(\leq 4 \phi^{1) \} \leq 25 \text{ mm} \)
- \(12 \text{ mm} \leq \phi^{1) \} \leq 25 \text{ mm} \)
- \(\ell_v = \ell_0 \)
- \(\ell_\text{e,ges} \)
- \(\ell_\text{e} \)
- \(t_\text{fix} \)
- \(c \)
- \(c_1 \)
- \(\geq 5 \phi \)
- \(\geq 50 \text{ mm} \)
- \(d_0 \)
- \(\ell_\text{fix} \)
- \(N \)

\(1) \) If the clear distance between lapped bars exceeds \(4 \phi \) then the lap length shall be increased by the difference between the clear bar distance and \(4 \phi \)

<table>
<thead>
<tr>
<th>Rebar connection with fischer Superbond</th>
<th>Annex B 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intended use</td>
<td>General construction rules for post-installed rebar anchors FRA</td>
</tr>
</tbody>
</table>
Table B1:
Minimum concrete cover c_1 depending of the drilling method and the drilling tolerance

<table>
<thead>
<tr>
<th>Drilling method</th>
<th>Nominal diameter of the bar ϕ [mm]</th>
<th>Without drilling aid [mm]</th>
<th>With drilling aid [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hammer drilling</td>
<td>≤ 20</td>
<td>$30 \text{ mm} + 0.06 c_1$</td>
<td>$30 \text{ mm} + 0.02 c_1 \geq 2 \phi$</td>
</tr>
<tr>
<td>Compressed air</td>
<td>≥ 20</td>
<td>$40 \text{ mm} + 0.06 c_1$</td>
<td>$40 \text{ mm} + 0.02 c_1 \geq 2 \phi$</td>
</tr>
<tr>
<td>drilling</td>
<td>≥ 25</td>
<td>$50 \text{ mm} + 0.08 c_1$</td>
<td>$50 \text{ mm} + 0.02 c_1$</td>
</tr>
<tr>
<td></td>
<td>≥ 25</td>
<td>$60 \text{ mm} + 0.08 c_1$</td>
<td>$60 \text{ mm} + 0.02 c_1$</td>
</tr>
</tbody>
</table>

1 See Annex B2, Figure B1 and Annex B3, Figure B2
Note: The minimum concrete cover as specified in EN 1992-1-1:2004+AC:2010 must be observed

Table B2:
Dispensers and cartridge sizes corresponding to maximum embedment depth $t_{v,max}$

<table>
<thead>
<tr>
<th>Rebar /FRA</th>
<th>Manual and accu dispenser</th>
<th>Pneumatic dispenser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ [mm]</td>
<td>Cartridge size 390 ml</td>
<td>585 ml</td>
</tr>
<tr>
<td></td>
<td>$t_{v,max} / t_{v,ges,max}$ [mm]</td>
<td>$t_{v,max} / t_{v,ges,max}$ [mm]</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>1400</td>
</tr>
<tr>
<td>12</td>
<td>1400</td>
<td>2000</td>
</tr>
<tr>
<td>16</td>
<td>1400</td>
<td>2000</td>
</tr>
<tr>
<td>20</td>
<td>1400</td>
<td>2000</td>
</tr>
<tr>
<td>25</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum concrete temperature</td>
<td>$-15^\circ C$</td>
<td>$-5^\circ C$</td>
</tr>
<tr>
<td>Maximum concrete temperature</td>
<td>$+40^\circ C$</td>
<td>$+20^\circ C$</td>
</tr>
</tbody>
</table>

Table B3: Working times t_{work} and curing times t_{cure}

<table>
<thead>
<tr>
<th>Temperature in the anchorage base [°C]</th>
<th>Minimum processing time t_{work} [minutes]</th>
<th>Minimum curing time t_{cure} [minutes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\geq +15$ to -10</td>
<td>60</td>
<td>36 hours</td>
</tr>
<tr>
<td>$> +10$ to -5</td>
<td>30</td>
<td>24 hours</td>
</tr>
<tr>
<td>> -5 to $+0$</td>
<td>20</td>
<td>8 hours</td>
</tr>
<tr>
<td>$> +5$ to $+5$</td>
<td>13</td>
<td>4 hours</td>
</tr>
<tr>
<td>$> +5$ to $+10$</td>
<td>9</td>
<td>120</td>
</tr>
<tr>
<td>$> +10$ to $+20$</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>$> +20$ to $+30$</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>$> +30$ to $+40$</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>

If the temperature in the concrete falls below $0^\circ C$ the cartridge has to be warmed up to $+15^\circ C$.

Rebar connection with fischer Superbond

<table>
<thead>
<tr>
<th>Intended use</th>
<th>Annexe B 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum concrete cover/ Maximum embedment depth per dispenser and cartridge size/ Working times and curing times</td>
<td></td>
</tr>
</tbody>
</table>
Table B4:
Installation tools for drilling and cleaning the bore hole and injection of the mortar

<table>
<thead>
<tr>
<th>Rebar / FRA \ Φ [mm]</th>
<th>Nominal drill bit diameter d₂ [mm]</th>
<th>Diameter of cutting edge dₚₜ [mm]</th>
<th>Steel brush diameter dₚ [mm]</th>
<th>Cleaning nozzle [mm]</th>
<th>Extension tube [mm]</th>
<th>Injection adapter [colour]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10 (^{1/2})</td>
<td>≤ 10,5</td>
<td>11,0</td>
<td>12,5</td>
<td>11</td>
<td>- white</td>
</tr>
<tr>
<td>10</td>
<td>12 (^{1/2})</td>
<td>≤ 12,5</td>
<td>12,5</td>
<td>15</td>
<td>9</td>
<td>white</td>
</tr>
<tr>
<td>12</td>
<td>14 (^{1/2})</td>
<td>≤ 14,5</td>
<td>15</td>
<td>17</td>
<td>15</td>
<td>blue</td>
</tr>
<tr>
<td>14</td>
<td>18</td>
<td>≤ 18,5</td>
<td>19</td>
<td></td>
<td></td>
<td>yellow</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>≤ 20,55</td>
<td>25</td>
<td>19</td>
<td></td>
<td>green</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>≤ 25,55</td>
<td>26,5</td>
<td>28</td>
<td>9 or 15</td>
<td>black</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>≤ 30,55</td>
<td>32</td>
<td></td>
<td></td>
<td>grey</td>
</tr>
<tr>
<td>28</td>
<td>35</td>
<td>≤ 35,70</td>
<td>37</td>
<td></td>
<td></td>
<td>brown</td>
</tr>
<tr>
<td>32</td>
<td>40</td>
<td>≤ 40,70</td>
<td>42</td>
<td></td>
<td></td>
<td>nature</td>
</tr>
</tbody>
</table>

\(^{1/2}\) Both drill bit diameters can be used

Rebar connection with fischer Superbond

<table>
<thead>
<tr>
<th>Intended use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation tools for drilling and cleaning the bore hole and injection installation of the mortar</td>
</tr>
</tbody>
</table>

Annex B 5
Safety regulations

- Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling!
- Wear well-fitting protective goggles and protective gloves when working with mortar fischer FIS SB
- Important: Observe the instructions for use provided with each cartridge.

1. Drill hole

Note: Before drilling, remove carbonized concrete, clean contact areas (see Annex B1)
In case of aborted drill hole the drill hole shall be filled with mortar.

- Drill hole to the required embedment depth using a hammer-drill with carbide drill bit set in rotation hammer mode or a compressed air drill.
- Drill bit sizes see Table B4.

Measure and control concrete cover c
\[c_{\text{drill}} = c + \frac{\phi}{2} \]

Drill parallel to surface edge and to existing rebar
Where applicable use fischer drilling aid.

For holes \(t_y > 20 \text{ cm} \) use drilling aid.
Three different options can be considered:

A) fischer drilling aid
B) Slat or spirit level
C) Visual check

Rebar connection with fischer Superbond

Intended use
Installation instruction part 1

Annex B 6
2.1 Compressed air cleaning

Blowing
two times from the back of the hole with oil-free compressed air (min. 6 bar) until return air stream is free of noticeable dust.

Brushing (with power drill)
two times with the specified brush size (brush diameter > borehole diameter) by inserting the round steel brush to the back of the hole in a twisting motion. The brush shall produce natural resistance as it enters the anchor hole. If this is not the case, please use a new brush or a brush with a larger diameter. For appropriate brushes see Table B4.

Blowing
two times from the back of the hole with oil-free compressed air (min. 6 bar) until return air stream is free of noticeable dust.

2.2 Manual Cleaning:

Manual cleaning is permitted for hammer drilled boreholes up to hole diameters \(d_0 \leq 18 \text{ mm} \) and depths \(l \), resp. \(l_{\text{ges}} \leq 160 \text{ mm} \)

<table>
<thead>
<tr>
<th>Blowing</th>
<th>two strokes with fischer blow up pump from the back of the hole until return air stream is free of noticeable dust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brushing</td>
<td>two times with the specified brush size (brush diameter borehole diameter (d_0)) by inserting the round steel wire brush to the back of the hole with a twisting motion. The brush shall produce natural resistance as it enters the anchor hole. If this is not the case, please use a new brush or a brush with a larger diameter. For approbate brushes see Table B4</td>
</tr>
<tr>
<td>Blowing</td>
<td>two strokes with fischer blow-out pump from the back of the hole until return air stream is free of noticeable dust</td>
</tr>
</tbody>
</table>

Manual cleaning:
fischer hand pump recommended for blowing out bore holes with diameters \(d_0 \leq 18 \text{ mm} \) and bore hole depth \(l \), respectively \(l_{\text{ges}} \leq 160 \text{ mm} \)

Rebar connection with fischer Superbond

Intended use
Installation instruction part 2

Annex B 7
3. Rebar preparation and cartridge preparation

Before use, make sure that the rebar is dry and free of oil or other residue. Mark the embedment depth on the rebar (e.g. with tape) \(t_e \). Insert rebar in borehole, to verify hole and setting depth \(t_s \) resp. \(t_{ges} \).

<table>
<thead>
<tr>
<th>Injection system preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1: Twist off the sealing cap</td>
</tr>
<tr>
<td>No. 2: Twist on the static mixer (the spiral in the static mixer must be clearly visible).</td>
</tr>
<tr>
<td>No. 3: Place the cartridge into a suitable dispenser.</td>
</tr>
<tr>
<td>No. 4: Press approximate 10 cm of material out until the resin is evenly grey in colour. Don’t use mortar that is not uniformly grey.</td>
</tr>
</tbody>
</table>

4. Inject mortar into borehole
4.1 borehole depth \(\leq 250 \text{ mm} \):

Inject the mortar from the back of the hole towards the front and slowly withdraw the mixing nozzle step by step after each trigger pull. Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the rebar and the concrete is completely filled with adhesive over the embedment length.

After injecting, depressurize the dispenser by pressing the release trigger. This will prevent further mortar discharge from the mixing nozzle.

Rebar connection with fischer Superbond

<table>
<thead>
<tr>
<th>Intended use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation instruction part 3</td>
</tr>
</tbody>
</table>

Annex B 8
4.2 borehole depth > 250 mm:

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assemble mixing nozzle FIS MR or FIS UMR, extension tube and injection adapter (see Table B 4)</td>
</tr>
</tbody>
</table>
| ![Mortar level mark](image2.png) | Mark the required mortar level \(l_m \) and embedment depth \(l_e \) resp. \(l_{e,ges} \) with tape or marker on the injection extension tube.

a) Estimation:

\[
l_m = \frac{1}{3} \cdot l_e \quad \text{resp.} \quad l_m = \frac{1}{3} \cdot l_{e,ges}
\]

b) Precise formula for optimum mortar volume:

\[
l_m = l_e \cdot l_{e,ges} \left(1.2 \cdot \frac{d_b}{d_0} - 0.2 \right) \, [\text{mm}]
\]
| ![Mortar level mark](image3.png) | Insert injection adapter to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the injection adapter towards the front of the hole.

Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the rebar and the concrete is completely filled with adhesive over the embedment length.

When using an injection adapter continue injection until the mortar level mark \(l_m \) becomes visible.

Maximum embedment depth see Table B 2 |
| ![Mortar level mark](image4.png) | After injecting, depressurize the dispenser by pressing the release trigger. This will prevent further mortar discharge from the mixing nozzle. |

Rebar connection with fischer Superbond

<table>
<thead>
<tr>
<th>Intended use</th>
<th>Annex B 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation instruction part 4</td>
<td></td>
</tr>
</tbody>
</table>
4.3 Insert rebar

For each installation insert the rebar slowly twisted into the borehole until the embedment mark is at the concrete surface level.

Support the rebar and secure it from falling till mortar started to harden, e.g. using wedges.

After installing the rebar the annular gap must be completely filled with mortar.

Proper installation
- Desired anchoring embedment is reached \(\zeta_i \); embedment mark at concrete surface.
- Excess mortar flows out of the borehole after the rebar has been fully inserted until the embedment mark.

Observe the working time "\(t_{\text{work}} \)" (see Table B3), which varies according to temperature of base material. Minor adjustments to the rebar position may be performed during the working time.

Full load may be applied only after the curing time "\(t_{\text{cure}} \)" has elapsed (see Table B3).
Minimum anchorage length and minimum lap length

The minimum anchorage length $l_{b,\text{min}}$ and the minimum lap length $l_{o,\text{min}}$, according to EN 1992-1-1:2004 + AC:2010 ($l_{b,\text{min}}$ acc. to Eq. 8.6 and Eq. 8.7 and $l_{o,\text{min}}$ acc. to Eq. 8.11) shall be multiply by a factor according to Table C1.

Table C1: Factor related to concrete class and drilling method

<table>
<thead>
<tr>
<th>Concrete class</th>
<th>Drilling method</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12/15 to C50/60</td>
<td>Hammer drilling and compressed air drilling</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table C2: Design values of the ultimate bond resistance f_{bd} in N/mm² for hammer drilling and compressed air drilling

According to EN 1992-1-1:2004 + AC:2010 for good bonds conditions (for all other bond conditions multiply the values by 0.7)

<table>
<thead>
<tr>
<th>Rebar ϕ [mm]</th>
<th>Bond resistance f_{bd} [N/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C12/15</td>
</tr>
<tr>
<td>8 to 32</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Rebar connection with fischer Superbond

- Performances
 - Minimum anchorage length and minimum lap length
 - Design values of ultimate bond resistance f_{bd}

Annex C1